Lessons learned from the development of processing systems and markets for Thai cassava

Klanarong Srióth1,2

1Kasetsart Agricultural and Agro-industrial Product Improvement, Kasetsart University, Bangkok, Thailand
2Cassava and Starch Technology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand

Consultation on Cassava Processing, Utilisation and Marketing
10-13 December, 2008
Natural Resources Institute, University of Greenwich, Medway, UK
Lesson learned from Thai cassava industry

Thai cassava industry

- 3rd world root production after Nigeria and Brazil
- Total root production of 25-30 million tons annually (10% of world production)
- 1st producer and exporter of cassava-derived products
- Generate up to 1,400 million USD revenue of exported products
World Cassava Production

Total Production 228 million tons (2007)

Source: FAOSTAT
Cassava production in Thailand

- Total planting area = 7.4 Million Rai or 1.2 Million hectare
- Mostly grown in North eastern, eastern part
- Root productivity = 4.7 tons /Rai or 30 tons / hectare

(World average = 12 tons / hectare)
Cassava is a cash crop of Thai farmers

Excellent agronomic characteristics

- Drought tolerance
- Easy to grow with low inputs
- All year round planting/harvesting
- High yield-improved varieties
- High root productivity
- Roots with high quantity/quality of starch
Lesson learned from Thai cassava industry

Sriroth, K.

Improved varieties + Cost-effective cultivation practices = Good productivity

Increased farmer’s Income
Improvement of root productivity

1. Improvement of high-yielded varieties

- R & D of conventional breeding for improved varieties
 - high-yield
 - high starch content
 - good plant feature
 - good stake quality
 - disease resistance
- Release of new improved varieties to farmers & industries
Lesson learned from Thai cassava industry

Cassava Varieties

Rayong5

Rayong90
Lesson learned from Thai cassava industry

Sriroth, K.

KU50

Huaybong 60

Cassava and Starch Technology Research Unit
Improvement of root productivity

2. Improvement of good cultivation practice

- Varieites: good varieties, good stake quality
- Period of planting & harvesting
- Soil preparation and conservation
- Cost-effective use of fertilizers
- Intercropping system
- Irrigation system
3. Supportive mechanisms / policies

- Efficient service of disseminating good stalks of developed varieties to farmers
- Training workshop of good cultivation practice to farmers
- Zoning of cassava planting area for yield improvement (MOA national agenda)
- Financial support
Beyond the farmer’s cash crop, cassava is an industrial crop
Cassava-derived products

- Chips
- pellets
- Native & modified starches
- Hydrolyzate and fermented products
Lesson learned from Thai cassava industry

Cassava and Starch Technology Research Unit

Sriroth, K.

Marketing structure of cassava in Thailand

Growers

Cassava roots

Small scale entrepreneur

Cassava chips

- Local consumption
- Pellet companies (Pelletization)

- Pellets
 - Traders
 - Export market
 - Ethanol and feed

Starch factories

Cassava starch

- Modification
 - Modified starch
 - Local consumption
 - Export market
Export volume of Thai cassava products

- Cassava Starch (ton)
- Cassava Chip (tons)
- Cassava Pellet (tons)

Year:
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006

Volume (tons):
- 0
- 500,000
- 1,000,000
- 1,500,000
- 2,000,000
- 2,500,000
- 3,000,000
- 3,500,000
- 4,000,000
Export value of Thai cassava derived products

Value (million Baht)

Year

Cassava Starch (million Baht)
Cassava Chip (million Baht)
Cassava Pellet (million Baht)

(Note: 1 US dollar ≈ 35 Baht)
Currently, there are about 277 chip factories with the total production of 4 - 5 million tons.

- Conversion: 2.00-2.50 kg fresh roots / 1 kg chips
 (25% starch content) (14% moisture content)
Lesson learned from Thai cassava industry

1. Chopping into small pieces

2. Sun-drying on a cement floor

Cassava and Starch Technology Research Unit

Sriroth, K.
Cassava pellets

- Produced from dried chips only
- Conversion: 1 kg chip : 1 kg pellet
- Soft pellets VS. Hard pellets
- Currently, there are 41 pellet manufacturers with the total production of 1.0 million tons
- Export market only for animal feed uses
Process of hard pellet production

Lesson learned from Thai cassava industry

Chips from storage
- Removal of sand and impurities
- Grinding and sizing
 - Steaming and Extrusion
 - Extrusion
 - Cooling
 - Sieving
 - Hard pellets
 - Storage

Sriroth, K.

Steam

Grinding chips
Extrusion
Cooling
Storage of pellets

Cassava and Starch Technology Research Unit
Cassava starch

Conversion: 4.2 - 4.75 kg fresh roots / 1 kg starch
(25% starch content) (13% moisture content)
- Currently, there are 73 factories registered to Thai Tapioca Trade Association.
- The production capacity is about 3.0-3.5 million tons per year.
Lesson learned from Thai cassava industry

Export volume and value of Thai cassava starch products

Volume (Million tons) - Value (Million Baht; 1 US dollars = 35 Baht)

Sriroth, K.
Technology development of cassava starch processing in Thailand

1st generation - Tapioca flour
- Sedimentation process

2nd generation - Tapioca starch
- Dewatering process with improved production efficiency and product quality

3rd generation - Multi-product industry
Lesson learned from Thai cassava industry

1st Generation - Tapioca flour production with sedimentation process

- Root Conveyor
- Rasper
- Filtration
- Sedimentation Pond
- Cassava Cake
- Drying

Cassava and Starch Technology Research Unit

Sriroth, K.
2nd Generation: Current process of cassava starch production in Thailand

1. Cassava Root
2. Washing
3. Raspining
4. Extractor
5. Separation 1
6. Fine Extractor
7. Separation 2
8. Dewatering
9. Cassava Starch
10. Drying
Root Preparation

- Root Hopper
- Root Peeler
- Stem Cutting
- Root Chopper
- Root Washer
- Rasper
Lesson learned from Thai cassava industry

Starch Extraction

Process A
- Starch Slurry
- Coarse Extractor
- Fine Extractor
- Separator

Process B
- Starch Slurry
- Horizontal Extractor
- Bent Screen
- Starch Hydrocyclone

Cassava and Starch Technology Research Unit

Sriroth, K.
Lesson learned from Thai cassava industry

Starch Drying & Packaging

- Dewatering Centrifugal
- Flash Dryer
- Packaging of high quality starch

Pulp Dewatering

- Coarse Extractor
- Screw Press

Cassava and Starch Technology Research Unit
Thai cassava starch - the right choice for industry

- GMO-free
- No color
- No odor
- No taste
- High paste clarity
- High paste viscosity
- High freeze thaw stability
Lesson learned from Thai cassava industry

Sriroth, K.

3rd Generation: Multi-product industries

High Quality Starch
- Modification
 - Functional Starch

Low quality Starch
- Fermentation
 - Chemicals

Pulp
- Biomethylation
 - Energy

Wastewater

Animal Feed
Lesson learned from Thai cassava industry

Starch Drying & Packaging

- Thermo Oil Boiler
- Biogas Plant
- Power Generator
- Thermo Oil Boiler
- Dewatering Centrifugal
- Flash Dryer
- Packaging

Cassava and Starch Technology Research Unit

Sriroth, K.
Pulp Dewatering

Process A
- Coarse Extractor
- Screw Press

Process B
- Horizontal Extractor
- Dewatering Centrifugal

Cassava pulp

Lesson learned from Thai cassava industry

Sriroth, K.

Cassava and Starch Technology Research Unit
Modification, functionalities and uses of some commercial cassava products

Lesson learned from Thai cassava industry

Sriroth, K.
Tapioca starch

Native starch
- Household
- Bakery
- Noodle
- Snack
- Tapioca pearl

Modified starch
- Pregelatinized starch
- Acid thinned starch
- Dextrinized starch
- Oxidized starch
 - Starch ether
 - Hydroxyalkyl/Cationic starch
 - Starch ester
 - Acetylated starch
 - Phosphate monoester starch
 - Crosslinked starch
 - Di-starch phosphate
 - Di-starch adipate

Starch hydrolysate
- Maltodextrin
- Sweeteners
 - Glucose, Dextrose, Fructose
- Sorbitol/Mannitol
- MSG/Lysine
- Organic acid
 - Citric acid
 - Lactic acid
- Alcohols
 - Ethanol

Lesson learned from Thai cassava industry
Sriroth, K.

Starch hydrolysate:
- Maltodextrin
- Sweeteners (Glucose, Dextrose, Fructose)
- Sorbitol/Mannitol
- MSG/Lysine
- Organic acid (Citric acid, Lactic acid)
- Alcohols (Ethanol)
Lesson learned from Thai cassava industry

Uses of modified cassava starches in food and non-food applications

Sriroth, K.
Starch hydrolysates and fermented products

- Maltodextrin
- Sweeteners & derivatives
 - glucose syrup
 - fructose syrup
 - sugar alcohol: sorbitol, mannitol
- MSG / Lysine – 6 Factories
- Acid: lactic acid
- Alcohols: ethanol

17 factories

Lesson learned from Thai cassava industry

Sriroth, K.
Starch hydrolysis → Fermentor → Purification/separation → Novel/Value-added products

Novel / Value-added products

- Feed & food additives: MSG, lysine
- Packaging: poly (lactic acid)
- Energy: Ethanol
Lesson learned from Thai cassava industry

Sriroth, K.

Lactic acid

Food & Feed
Cosmetic & Pharmaceutical
Chemicals, chemical feedstock
Production process of polylactic acid (PLA)

1. Fermentator
2. Purification
3. Lactic acid
4. Lactide
5. PLA

Lesson learned from Thai cassava industry
Sriroth, K.
Cassava ethanol

Conversion: 6 kg fresh roots / 1 liter of anhydrous ethanol
2.5 kg chips / 1 liter of anhydrous ethanol
Technology development for bioethanol production from cassava

- Energy and water saving process
- Waste utilization
Lesson learned from Thai cassava industry

Sriroth, K.

Cassava Chips

\(\alpha \)-Amylase \(\approx 85-105^\circ C \)

Glucoamylase \(\approx 55-60^\circ C \)

Yeast \(\approx 30-32^\circ C \)

Distillation & Dehydration

Conventional process

Milling

Cooking

Liquefaction

Saccharification

Fermentation

Cassava and Starch Technology Research Unit
Lesson learned from Thai cassava industry

Cassava Chips

Milling

α-Amylase
≈ 85-105°C

Cooking

glucoamylase
yeast
≈ 30-32°C

Distillation & Dehydration

Simultaneous Saccharification and Fermentation process - SSF

Liquefaction

SSF

Cassava and Starch Technology Research Unit

Sriroth, K.
Lesson learned from Thai cassava industry

Sriroth, K.

Cassava and Starch Technology Research Unit

Mass Balance of Ethanol Production from Cassava Chip by SSF process

T/D = Ton/Day, TS = Total Solid , L/D = Liter/day

Fermentation efficiency 90%, Distillation efficiency 98.5%
Lesson learned from Thai cassava industry

Sriroth, K.

Simultaneous Liquefaction, Saccharification and Fermentation process - SLSF

UNCOOKED SINGLE-STEP

Cassava Chips

Granular starch hydrolyzing enzyme (GSHE)

Milling

yeast ≈ 30-32°C

Distillation & Dehydration

Fermentation
Lesson learned from Thai cassava industry

Sriroth, K.

Continuous R &D

Cassava and Starch Technology Research Unit

Ethanol Fermentation

Very High Gravity (VHG) Technology Development

Fresh Root

(moisture content = 60-70%)
100 Tons

Cassava Chip

(moisture content = 14%)
41 Tons

Process water

99 Tons

Milling

Mixing

(total solid = 25%)
140 Tons

Water

59 Tons

Sun Drying

Process water saving

Ethanol Fermentation
Lesson learned from Thai cassava industry

Less by using fresh roots

Less by using SLSF process

Less by using VHG process

Cassava and Starch Technology Research Unit
Lesson learned from Thai cassava industry

Sriroth, K.

Industrial use of cassava

Cassava roots
(26 million tons)

Native / modified starches
14.7 million tons
(3.5 million tons of starch)

Chips/Pellets
11.07 million tons
(5 million tons of chips/pellets)

Bioethanol
0.23 million tons
(39 million liters of ethanol)

Local use (37%)
5.44 million tons
(1.3 million tons of starch)

Export (63%)
9.26 million tons
(2.2 million tons of starch)

Local use (16%)
1.77 million tons
(0.8 million tons of chips/pellets)

Export (84%)
9.30 million tons
(4.2 million tons of chips/pellets)

Note: Conversion ratio

4.2 kg of fresh roots / 1 kg of starch
2.2 kg of fresh roots / 1 kg of chips & pellets
6 kg of fresh roots / 1 liter of bioethanol
Lesson learned from Thai cassava industry

Sriroth, K.

The lesson learnt from the development of processing systems and markets of Thai cassava industry is market-oriented technology development by “Cassava Cluster” – a collaborative group of all cassava stakeholders.
Lesson learned from Thai cassava industry

- **Raw material**
- **Technology**
- **Product**
- **Application**
- **Market-oriented**
- **Policy / Law / Environment**
- **R&D**

Cassava and Starch Technology Research Unit
New yield-improved varieties with GMO free

Well-developed production technology for starch / starch derivatives

Collaboration of stakeholders

Developed farm practices for high root productivity

Remarkable characteristics of starch / starch derivatives for food/non-food uses

Effective policy / Strategy

Strength of Thai cassava industry
Collaboration of stakeholders – “CASSAVA CLUSTER”

- Ministry of Agriculture and Cooperatives
- Ministry of Commerce
- Ministry of Industry
- Ministry of Science and Technology
- Non-profitable organization

 The Thai Tapioca Trade Association (TTTA)
 The Thai Tapioca Flour Industries Trade Associations
 The Thai Tapioca Starch Association (TTSA)
 North Eastern Tapioca Trade Association
 The Thai Tapioca Development Institute (TTDI)
Lesson learned from Thai cassava industry

Strategy of Thai cassava industry

Strategy I: Improvement of root productivity
Strategy II: Value addition of cassava-based products
Strategy III: Market expansion
Strategy IV: Research and development (including infrastructure and human resource development)

Cassava – the winner crop of Thailand

Cassava and Starch Technology Research Unit

Sriroth, K.
Lesson learned from Thai cassava industry

Sriroth, K.

Thank you for your attention

http://www.cassava.org
Starch Update 2009
The 5th Conference on Starch Technology
September 2009
Queen Sirikit National Convention Center
Bangkok, THAILAND

Lesson learned from Thai cassava industry
Sriroth, K.
Activities

- Keynote lectures
- Oral and poster presentation
- Study tour to starch factory

Lesson learned from Thai cassava industry

Sriroth, K.